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Motivation (1)

• Fast particle interaction with Tokamak bulk (thermals) has been investigated to
a reasonable level. We have heard a great deal on the physics of MHD (bulk) +
fast particles.

• It was generally understood that low frequency [ω/ωci � 1] microturbulence char-
acterized by small perp. wavelength [k⊥ρi ' Ô(1)] and long parallel wavelengths
[k||/k⊥ � 1] such as ITG/TEM turbulence would not affect fast particles at all.

. In TFTR Ohmic Discharges with neutral beams: �...Central Fast Ion Di�usion
is an order of magnitude smaller than the thermal di�usivities... except during
MHD activities when fast ions tend drive collective instabilities...�
[W. W. Heidbrink et al PoFB (1991), W. W. Heidbrink & Sadler NF (1995) ]

. In TFTR DT Discharges : �...low radial di�usivities inferred for high energy
alphas was consistent with orbit averaging over small scale turbulence�
[S. J. Zweben et al NF (2001)]

. 2D Hasegawa-Mima Turbulence simulation: �Orbit averaging� of small-scale tur-
bulence over larger fast α orbits is the reason for Df/Dth ≤ 0.1
[Myra et al, Phys. Fluids B 5, 1160 (1993), Manfredi et al, Phys. Rev. Lett,
76, 4360 (1996)]
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Motivation (2)

• More recently, the study of interaction of microturbulence and fast particles has
been revived:

. Strong correlations between suppression of ITG by energetic particles in
ASDEX-U and formation of Ion Transport Barrier (or ITBs) in monotonic q-
pro�le plasmas.
[G. Tardini et al, Nuclear Fusion 47 (2007)]
[M. Romanelli et al, Plasma Phys. Contr. Fusion 52 (2010)]

. Redistribution of Neutral Beam Injected ions in MHD stable plasma
[S. Gunter et al, Nuc Fusion 47 (2007)]

. Redistribution of Neutral Beam Injected energetic ions by ITG Turbulence
[W. W. Heidbrink et al, Phys. Rev. Lett. 103 (2009)]

• To properly understand this new situation, a model with proper FLR effects,
Landau damping, magnetic resonances, transit resonances, drifts and radial
equilibrium inhomogeneity with global effects would help.

R. Ganesh 5th Iter International Summer School, 20-24 June 2011 Aix en Provence, FRANCE 4



R

r

θ
∆

Μagnetic
Axis

ρ

∆(ρ) < 0           ∆’(ρ) < 0

z

φ

• Temperatures of 10− 25 KeV and den-

sity of more than few times 1020 m−3

have been achieved.

• Fusion products are born energetic (order

of MeV )

• Heating is normally through an inductive

process

• As resistivity decreases with temperature

(T−3/2) additional heating and current

drive is necessary

• These methods involve either a resonant

process (Cylocotron Heating) and nonres-

onant one (Neutral Beams)

• Both processes produce energetic or fast

particles

• As a driven system, Tokamak has equilib-

rium density and temperture gradients.

  

Tokamak geometry - Background (1)
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Tokamak geometry - Background (2)

• Due to equilibrium gradients, a gyrating particle cannot “come back exactly” to
the same location, resulting in cross-field “drifts”.

• If ∆B/B � 1, ∆B is variation on scale ρL,j then following Kulsrud (1957),
µ = v2

⊥/2B is a “slowing varying” constant! (Magnetic Moment)

• When gyration is averaged out, particle guiding centers move along ê|| = ~B/B

and drift across ~B with ~v ' ~vg = d~R/dt = v||ê|| + ~vd + higher order. Here
~vd = ~vEB + (v2

⊥/2 + v2
||)êz/(Rωcj) contains E ×B, ∇B and curvature drifts.
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• Types of particles :

[Co/Counter]Passing ions/electrons, Trapped ions/electrons, Fast Particles (Trapped,Passing)

Trapped

Passing

Drift Surface

Flux Surface

• Drift speeds are relatively small: (v2
||, v

2
⊥) ' v2

th,j,

vdj/vth,j ' 2vth,j/(Rωcj) = O(ρL,j/R) (non-

MHD).

• For B-field with Bmax,min, constancy of µ, ε, ψ0 im-

plies :

Passing Particles: 0 < 1/(1+v2
||/v

2
⊥) < B(ρ)/Bmax

with closed “drift-surface” in poloidal plane,

(r − R− vdj/ωtj)2 + z2 = const,

transit frequency ωt,j = Bθv||/Bρ = v||/q(ρ)R

Trapped Particles: B(ρ)/Bmax < 1/(1 + v2
||/v

2
⊥) <

B(ρ)/Bmin with ”banana-like” drift-surfaces in

poloidal plane, (ρ − ρ0)
2 = v2

dj/ω
2
bj(1 − θ2/θ2

b),

bounce-frequency ωbj = v⊥
p

(ρ/2R)/(q(ρ)R, θb =

v||0
p

(2R/ρ)/v⊥

  

Tokamak geometry - Background (3)
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Tokamak geometry - Background(4)

. Field line in a Tokamak equilibrium is a space curve which follows

rdθ/Bθ = Rdφ/Bφ = dl/B

. Following the �eld line around the torus we have

dφ = rBφ/(RBθ) = q(r)dθ where q(r) = rBφ/(RBθ)

. Following �eld lines ones around poloidal axis (∆θ = 2π), we follow q-times around toroidal
dir.

. For rational q-value, a �eld line will map back on itself after q=m toroiidal transits. Hence not
uniformly �ll up a �ux surface

. Because of axisymmetry, the fact that q is not usually an integer is not important. Flux sur-
faces can be de�ned for both rational or irrational values of q [KAM].

. For nonaxisymmetric perturbations, say, m1 and n1, k|| = (n1 ∗ q −m1)/(Rq) vanishes
on surfaces if m/n = m1/n1 - called a mode rational surface.
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A glance at MHD (1)

MagnetoHydroDynamics - For Bulk (Thermal) Particles

Simplification and Consequences

• Fluid description is assumed to be valid : Meaning, at each spatial point the
velocities of individual particles within a small region (fluid element) at x is
averaged and the resultant velocity is Vfluid

- All particle vel. info. is lost! (Moments of Vlasov Eqn)

- Vel v(t) becomes Vfluid(x, t) - a function of x!

- Particle-based length/time scales such as ρL,j, ωc,j (Larmor), ωtrapped/passing,j,
ωdrift,j (cross-field) are all lost!!

∂ρ
∂t +∇ · (ρVfluid) = 0; ρ

∂Vfluid
∂t + ρVfluid · ∇Vfluid = −∇P + J ×B;

ρ = mn, P/ργ = constant
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A glance at MHD (2)

• Entire plasma is considered as one single fluid and infinitely conducting

Efluid = E + Vfluid ×B|lab = ηJ, η = 0!

• Maxwell’s Eqn
∂B
∂t = −∇× E, ∇ ·B = 0 ∇×B = µ0J
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A glance at MHD (3)

• E|| = 0 always!

E|| = E ·B = −B · Vfluid ×B = ηJ ·B = 0

Particle effects such as phenomenon of Landau Damping is eliminated!

• Frozen-in-Field Plasma : Due to infinte conductivity, any plasma motion (Vfluid)
generates an induction Electric field E, such that there is no relative motion
between Vfluid and B!

∂B
∂t −∇× (B × Vfluid) = η∇2B = 0

Ideal MHD model can not predict motion which grows (finite γ) and oscillates or
rotates (finte ωr) at the same time!
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Fusion α−particle (1)

• In a hot, dense enough plasma environment, Deuterium and Tritium fuse together
to release Helium ion plus a neutron and a lot of kinetic energy.

• Neutrons carry away about 14.03 MeV of energy (with which we won’t bother
ourselves)

• Helium ion (also called an α particle) comes away with 3.56 MeV

• From Tokamak fusion experiments [Nuc. Fusion, 32 (2) 1992], we know that in
reactor-like situation, α’s:

. Will remain con�ned to self-heat the main plasma e�ciently

. Slowing down and energy transfer to the main plasma will be de�ned by classical Coulomb
collisions with electrons and ions

• Since α’s in a reactor-like situation are created by thermal Deuterium-Tritium
reactions, it is expected that their birth profiles will be very broad as compared
to today’s experiments.
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Fusion α−particle (2)

• Classical Interaction of α’s with the main plasma

. Stix [Plasma Physics 14, 367 (1972)] derived slowing-down rate of fast alpha energy E in a
plasma:

dE
dt = −2E

τs

h
1 +

Ecrit
E

i3/2

whereτs Spitzer slowing down time of α's with electron and Ecrit is a critical energy value.

. τs ∝ T
3/2
e
n , Ecrit ∝ Te

. E > Ecrit α's loose energy to plasma electrons

. At E = Ecrit, energy loss on ions and electrons is equal.

. E < Ecrit plasma ions gain energy from α's

. In Tokamak experiments, these ideas have been con�rmed [Taylor et al, Phys. Rev. Lett.,
76, 2722 (1996)]
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• Neoclassical Diffusion of α’s

. In the core, α's obey neoclassical di�usion and this has been experimentally veri�ed with
Dα,core ' 0.1 m2/s (10 times smaller than anomalous thermal ion di�usion!)

. In the outer region, �ripple� losses give rise to rapid di�usion (ripple banana orbit)

. �Orbit averaging� of small-scale turbulence over larger fast α orbits is the reason for Dα '
0.1 m2/s [Myra et al, Phys. Fluids B 5, 1160 (1993), Manfredi et al, Phys. Rev. Lett, 76,
4360 (1996)]

. Question is: �at reactor-scales, if turbulence scale size increases with machine size (non-gyro-
Bohm), then, what happens to orbit averaging and Dα value?�

 
 
 (Local values)  Scaling of alpha density and beta with T (Ti=Te, Z=1.5) 
                     Uckan et al,  Fusion Technology, 13, 411 (1988) 

• Projected α density and β profiles in a reactor-like

Tokamak.

. Classical slowing-down physics allows compu-
tation of local values of nfα/ne and βα/β
with β = βi + βe + βα (total β) [Uckan et
al, Fusion Tech., 13, 411 (1988)]

. Assuming Te = Ti = T , Zeff = 1.5 then
nfα/ne and βα/β increase as temperature
goes up. At Te10.5 KeV βα/β ' 5% and
nfα/ne ' 0.1%. In the core (20KeV ),
0.8%, 15%!

  

Fusion α−particle (3)
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Collective α−particle instabilities (1)

• Low-frequency MHD Modes

. In a �gently� changing B − field, single particle energyW , Ist adiabatic invariant µ and
angular momentum Pφ are conserved.

. Consequently particle orbits in a Tokamak are �closed�.

. In a poloidal projection, trapped particles undergo �banana� and �potato� orbits. Later
orbits are attributed to large FLR size compared to banana width (radially nonlocal).

. Periodic motion of banana's (potato's) leads to precessional drift (frequency ωD) which is
proportional toW .

. Depending on its energy range, trapped fast particle precessional frequency ωDf can be
larger than or comparable or smaller than typical ω of low-frequency MHD disturbances.
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Collective α−particle instabilities (2)

. If ω � ωDf then energetic banana orbits complete many toroidal revolutions during one ω−1

implying conservation of magnetic �ux through the toroidal trajectory of the banana center
(third adiabatic invariant). This has stabilizing e�ect. [Antonsen and Lee, Phys. Fluids, 25,
131 (1982)].

. If ω ' ωDf , then third adiabatic invariant breaks down. Resonant destabilization results.

. Typically, if ω ' ω∗i then typical fast particle energy ' 100KeV comparable to standard
auxillary drive energy range.

• Internal KinK Mode + Fast Particles :

. ω ' ωDf −→ Destabilization of internal kink leading to �Fishbone instability� [McGuire
et al, Phys.Rev.Lett., 60, 891 (1983)]

. ω � ωDf −→ Stabilization of sawteeth period leading to �Monster sawteeth� [Porcelli,
PPCF, 33, 1601 (1991), Campbell et al, Phys.Rev.Lett., 60, 2148 (1988)]
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Collective α−particle instabilities (3)

• High-n Ballooning Modes + Fast Particles :

. ω ' ωDf −→ Destabilization of Ballooning Modes lead to birth of
�High-n Fast Particle Driven Kinetic Ballooning Modes� [Chang et al, Phys. Rev. Lett. 76,
1071 (1996), Tsai et al, Phys. Fluids B 5, 3284 (1993), Zonca et al, PPCF, 38, 2011 (1996)]

. ω � ωDf −→ Stabilization of Ballooning Modes [Connor et al, Joint Varenna-Grenoble
Meet (1982), Rosenbluth et al, Phys. Rev. Lett. 51 1967 (1983)]
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Coppi et al, Phys.Rev.Lett., 63,2733(1989)

βετα  ((Fast Particle)

Omega*i

Fishbones

omega ~

omegad

MHD

omega ~ omega*i

stable

 
 
  McGUIRE et al (1983) – FISHBONES  

FISHBONES (experimental) PHASE DIAGRAM

  

Collective α−particle instabilities (5)
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• Low-n global Kinetic Ballooning Modes are shown to be unstable. [R. Ganesh et al, Phys. Rev.

Lett. (2005)]

• Effect of Fast Particles on global modes such as Kinetic Infernal Modes and Low-n Kinetic

Ballooning Modes is a open question.

• Multiple scales involved will necessitate novel numerical and mathematical approaches.
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• Low-frequency MHD Modes : Fishbone Instability and Monster Sawteeth

(a) Mode structure of Kinetic Infernal Modes, n = 3 (left) and Standard KBM n = 7

  

Collective α−particle instabilities (6)
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Collective α−particle instabilities (7)

• Alfvenic Modes - Toroidal Alfven Eigenmode family

. For reactor-like plasma parameters, vf/vA(0) ' 1.9 where vf is the fast particle velocity
and vA = B/

√
µ0ρ, What are the consequences?

. In a slab-like system,
Simple Alfven waves : ~k|| ~B0 and �uid vel. oscillates in the plane of ~k and ~B0.

Shear Alfven waves : ~k at an angle to ~B0 and �uid vel. oscillates in the plane ⊥ to ~k
and ~B0. But along ~B0, ω = k||vA always

. In a toroidal system, due to the e�ect of magnetic shear and toroidicity, shear Alfven stability
problem can be written as

d
dr(ρω

2 − F 2)r3d~ξ
dr − (m2 − 1)[ρω2 − F 2]r~ξ + ω2r2dρ

dr
~ξ = 0

where F = (m − nq)Bθr/
√
µ0, m,n−poloidal and toroidal mode numers, q(r) =

rB/RBθ is safety factor, ~ξ is the usual displacement vector and ρ−is mass density

[Cheng and Chance, Phys. Fluids, 29 (11), 3695, (1986),
J. Wesson, Tokamaks, 3rd Edition, pp: 402 (2004)]
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Collective α−particle instabilities (8)

. For a given ω, the coe�cient of the highest derivative (in red) vanishes at the radius r for
which

m− nq = ± rω

Bθ/
√

(µ0ρ)
= ± ω

2ωTAE
where ωTAE =

vA
2Rq .

. Singular solution→ no discrete spectrum, only continous spectrum

. Continuum spectra are always damped! Only discrete spectrum grows or damps

In 2D Euler �uids, in 1967 K.M. Case obtained continuum spectra; similar idea has been applied
to 2D Electron Plasmas by Corngold
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n=1

m=1

m=2

m=3

m=4

Without m−coupling

0 1r/a

freq

. In cylindrical geometry, for each (m,n), ω(r) is
given by the above equation.

. In toroidal geometry, B-�eld is not uniform on a
�ux surface, i.e., poloidal Fourier component are
strongly coupled.

. For a given n, ω(r) curves break and join and
leave gaps in ω(r).

Gap is analogous to the band-gap of an electron
in a periodic well of crystal lattice [C. Kittel, In-
tro. to solid state physics,5th Edition, Weley,
NewYork (1976)]

  

Collective α−particle instabilities (9)
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           TAE Observation in TFTR. Wong et al (1991) 

 
 
                       TAE – Cheng et al (1986) 
                                      Dashed lines are for uncoupled poloidal mode numbers 

. Moreover, poloidal coupling introduces a discrete mode in the
gap called �gap mode� or Toroidal Alfven Eigenmode (TAE).

. While Shear Alfven Continuum is heavily damped, TAE is
weakly damped and has ω ' vA

2qR = ωTAE.

. If fast particle velocity vf is comparable to vA then TAE could
become resonantly unstable.

. Then, fast particles (fusion α−particles) coupled to TAEs could
then be violently thrown out of the plasma before they are
�slowed-down�, undermining the self-heating process

. (Top right �gure) Cheng et al show the continuum (�degener-
acy�) lifted due to toroidal coupling and formation of �gap�. [As
an analogy, think of Stark-e�ect in quantum mechanics]. In the
�gap� is a discrete mode which is TAE.

. (Bottom right �gure)Fast particles (such as fusion alphas) can
couple to TAE and drive them unstable. Bθ �uctuations then
throws out fastparticles. This was shown experimentally in
TFTR.

  

Collective α−particle instabilities (10)
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             TAE  ZOO  (Kramer et al 1998) 

. As in Quantum Mechanics, more variations of TAE are
born with more �asymmetries� or �forcing� : degeneracy
(or continuum) splitting by �external forces�

. KTAE : Ion FLR and electron conductivity [Candy and
Rosenbluth, Phys. Plasma 1, 356 (1995)]

. ETAE/NAE : Ellipticity/Triangularity induced split in
the TAE continuum [Betti and Freidberg, Phys. Fluids
B (3), 1865 (1992)]

. CLM : In the core, if ε > s, then Core Localized TAE
Mode is �lifted� out of degeneracy.

. For low-n(1 < n10) TAEs, kinetic e�ects and non-
linearity physics of TAEs in the presence of fast parti-
cles have been extensively studied by Berk, Breizmann,
Pekker, Plasma Physics Reports, 23, 778 (1997)

. A cartoon of this zoo of TAEs is shown in the �gure on
the right.

  

Collective α−particle instabilities (11)
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                              For ITER-like parameters, linear alpha-driven TAEs 
                                  Unstable for  10 < n < 50 (Putvinski et al 1996) 

 
 TAE Mode Amplitude with NB heating power 
                                      (DIII-D) (Strait, Heidbrink et al 1993) 

. Tiny Bθ �uctuations could derail a good percentage of
energetic α.

. (see �gure on top right) Increase in fast particle power,
does not increase βf according to classical theory.

. Fast-particle-destabilized-TAE removes fast-particles
and saturates βf .

. Putvinski et al (1996) have predicted using a Linear
Boundary Layer Code that for reactor-like machines n
ranging in 10 < n < 50 would be more important
than low-n

. Nearly all of the present-day machines study low n
α−particle driven TAEs or its variations. In reactor-
like situation, a TAE-turbulence could then be expected
with 10 < n < 50.

. As of now, very few models exist for studying inter-
action of TAE-continuum-decrete-mode-turbulence and
fast particles.

  

Collective α−particle instabilities (12)
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Global linear gyrokinetic theory (1)

• Aim of gyrokinetic theory is:

. To describe e�ectively short perp. wavelength e�ects in

tokamak, keeping FLR information to all orders

. To e�ciently describe low frequency waves (as com-
pared to ωc,j) without resolving in time the Larmor
motion

• Small parameters :

. Ratio of Larmor radius to the Major radius or equilib-

rium gradient length scale [ρL,j/R, ρL,j/L� 1]
. Ratio of freq. of plasma disturbance to the gyrofre-
quency [ω/ωc,j � 1]
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Global linear gyrokinetic theory (2)

• Vlasov Eqn for species j :

D

Dt
fj(~r,~v, t) ≡ ∂fj

∂t
+ ~v · ~∇fj +

qj
mj

( ~ET + ~v × ~BT ) · ~∇vfj = 0

• ~ET and ~BT are total electric and magnetic fields to be obtained from Max. Eqns

• Assume an “equilibrium” without a zeroth order E-field and with zeroth order
magnetic field ~B.

• For small perturbation Ẽ around this “equilibrium” one can expand fj = f0,j + f̃j
such that f̃j/f0,j � 1

• Thus zeroth order eqn is :

D

Dt

∣∣∣∣
u.t.p.

f0j(~r,~v, t) = 0 where
D

Dt

∣∣∣∣
u.t.p.

≡ ∂

∂t
+ ~v · ~∇+

qj
mj

(~v × ~B) · ~∇v
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Global linear gyrokinetic theory (3)

• First order eqn is
D

Dt

∣∣∣∣
u.t.p.

f̃j(~r,~v, t) = − qj
mj

Ẽ · ~∇~vf0j

• Here “u.t.p.” implies “unperturbed trajectory of particle” meaning equilibrium
trajectories of particles

• Within a “linear” theory, the effect of perturbation does not “back react” and
change the equilibrium features.

• Express Ẽ in terms of ϕ̃, ~B in terms of ~A, define change of variables (~r,~v) →
(~r, ξ = v2/2, µ = v2

⊥/2B,ψ0). This helps express velocity degrees of freedom in
terms of single particle constants of motion.

• Using particle canonical angular momentum for species j, i.e., ψ0j = êφ ·[
~r × ( ~A+mj~v/qj)

]
= ψ+mjrvφ/qj, one can write f0j(~r,~v) = f0j(~r, ξ, µ, ψ0j).

Here cylindrical co-ordinates ~r ≡ (r, φ, z) have been introduced and ψ = rAφ is
the poloidal flux function per unit radian. Such a transformation would enable
one to express f0j in terms of single particle constants of motion.
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Global linear gyrokinetic theory (4)

• In the new variables, ∇vf0j term on the right hand side (r.h.s) of first order
equation becomes

∇vf0j(r, ξ, µ, ψ0j) = v

(
1 +

mjrvφ
qj

∂

∂ψ0j

)
∂f0jψ

∂ξ
+
v⊥
B

∂f0jψ

∂µ
+
mjrêφ
qj

∂f0j

∂ψ0j

∣∣∣∣
ψ0=ψ

where f0jψ ≡ f0j(ψ0j = ψ) and êφ is the toroidal unit vector.

• Similarly using new variables, write perturbed distribution as “adiabatic” response
and the “rest”!

f̃j = h
(0)
j + ϕ̃

qj
mj

[(
1− vφ

Ωpj
∇n
)
∂f0jψ

∂ξ
+

1
B

∂f0jψ

∂µ

]

Here h
(0)
j is the zeroth order term of hj = h

(0)
j + 1

wcj
h

(1)
j + 1

w2
cj
h

(2)
j ..... Remember

that we would like to describe modes with ω � ωc,j and note that D/Dt '
O(ωcj).

R. Ganesh 5th Iter International Summer School, 20-24 June 2011 Aix en Provence, FRANCE 29



  

Global linear gyrokinetic theory (5)

• Putting the last two equations into first order eqn, we get:

D

Dt

∣∣∣∣
u.t.p

h
(0)
j (r, v, t) = − qj

mj

[
∂f0jψ

∂ξ

∂

∂t
+
v||
B

∂f0jψ

∂µ
ê|| · ∇+

1
Ωpj
∇nf0j

∣∣∣∣
ψ

êφ · ∇
]
ϕ̃+O(ε) (1)

In above equation, we have introduced the following definitions: Ωpj = wcjBp/B,
wcj = qjB/mj, Bp = |∇ψ|/r

• Gyroaveraging: In large aspect ratio Tokamak, v = v⊥(ê%cosα+ êθsinα) + v||ê||,
where unit vectors (ê%, êθ, êφ) define the toroidal coordinates and α is the gyro-
angle.

• We define gyro-averaging a quantity “Q” as

< Q >=
1

2π

∫ 2π

0

dαQ(α; ..)
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Global linear gyrokinetic theory (6)

• In the perturbed eqn above, the terms in square brackets [..] on the r.h.s. are
all equilibrium quantities and are independent of α. Thus only the electrostatic
potential is to be averaged. Similarly, on the left hand side (l.h.s), h0

j is
independent of α, hence, only D/Dt|u.t.p is to be gyro-averaged.

•
D

Dt

∣∣∣∣
u.t.p

gyro−averaging
=⇒ D

Dt

∣∣∣∣
u.t.g

≡ ∂

∂t
+ (v||ê|| + vdj) · ∂

∂R

where vdj = (v2
⊥/2 + v2

||)êz/(rwcj), u.t.g. implies unperturbed trajectory of
guiding centers R defined by R = r + v × ê||/wcj.

• Similarly the electrostatic potential is to be gyroaveraged, but we dont know the
form of φ!

< ϕ̃ >=
1

2π

∫ 2π

0

dα [ ϕ̃(r[α], t)) ]
∣∣∣∣
r=R−v×ê||/wcj

Since ϕ̃(r[α], t) is an unknown function, the gyro-averaging is performed by first
Fourier decomposing these functions.
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Global linear gyrokinetic theory (7)

• Now represent the particle co-ordinate r by gyro-center R and remember that

Jp(x) =
1

2π

∫ 2π

0

dα exp[ι(xsinα− pα)]

• The final form of gyrokinetic eqn is

D

Dt

∣∣∣∣
u.t.g

hj(R, v, t) = −
(
qj
mj

)[
∂f0jψ

∂ξ

∂

∂t
+
v||
B

∂f0jψ

∂µ
ê|| · ∇+

1
Ωpj
∇nf0j

∣∣∣∣
ψ

êφ · ∇
]
×

(ϕ̃(k; )J0(k⊥%Lj))

+O(ε) (2)

• Solution to the last eqn can be obtained by Green function technique: Replace
the r.h.s. by a unit source. For a Sinusoidal time dependence, solve for the
Green function or Propagator P. An explicit analytical form is obtainable by the
characteristics of unperturbed trajectories of the guiding centre and perturbation
theory for velocity.

R. Ganesh 5th Iter International Summer School, 20-24 June 2011 Aix en Provence, FRANCE 32



  

Global linear gyrokinetic theory (8)

• Note that for a unit source, P is only dependent on “equilibrium quantities”!

• This situation can be further simplified by choosing a simple distribution function,
for example one without µ or pitch angle dependence.

• Assume for equilibrium f0j, a local Maxwellian of the form

f0j(ξ, µ, ψ) = fMj(ξ, ψ) =
N(ψ)(

2πTj(ψ)

mj

)3/2
exp

(
− ξ

Tj(ψ)/mj

)

so that ∂f0j/∂µ ≡ 0 by choice and density profile N(ψ) is independent of the
species type j.

• In terms of P solution to h0
j is in guiding center co-ordinates ~R is :

h0
j(~R,~v, ω) = −

(
qjFMj

Tj

)∫
d~k exp

(
ι~k · ~R

) (
ω − ω∗j

)
(ι Pj) ϕ̃(~k; )J0(k⊥%Lj) +O(ε)
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Global linear gyrokinetic theory (9)

• ~k = κ êρ + kθ êθ + kφ êφ and κ = (2π/∆ρ) kρ, with ∆ρ = ρu − ρl which
defines the radial domain, kφ = n/r and kθ = m/ρ; ω is the eigenvalue and

ω∗j = ωnj

[
1 + ηj

2

(
v2
||

v2
thj
− 3
)

+ ηjv
2
⊥

2 v2
thj

]
with ωnj = (Tj∇n lnNkθ)/(qjB) is the

diamagnetic drift frequency; ηj = (d lnTj)/(d lnN).

• Note also that since the large aspect ratio equilibria considered are axi-symmetric,
the toroidal mode number “n” can be fixed and the problem is effectively two
dimensional in (ρ, θ) (configuration space) or (κ, kθ) (Fourier space).

• To obtain the particle density fluctuation ñj(~r;ω), one needs to go from guiding

center (g.c.) co-ordinate ~R to particle co-ordinate ~r using ~R = ~r + ~v × ê||/wcj,
by replacing hj using the adiabatic relationship discussed earlier, followed by the
integration over ~v keeping in mind the gyro-angle integration over α. This last
integration on α yields an additional Bessel function “J0” for ϕ̃, Thus, in real
space ~r, for species j, we finally have:

ñj(~r;ω) = −
(
qjN

Tj

)[
ϕ̃+

∫
d~k exp

(
ι~k · ~r

) ∫
d~v
fMj

N

(
ω − ω∗j

)
(ιPj) ϕ̃(~k; )J2

0 (xLj)
]
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Global linear gyrokinetic theory (10)

• The solution P for a given (~k, ω) is simply

P(~R,~k, ε, µ, σ, ω) =
∫ t

−∞
dt′ exp

(
ι
[
~k · (~R′ − ~R)− ωt′

])
=
∫ t

−∞
dt′ exp

(
ι

∫ t′

dt′′~k · ~vg(t′′)− ιωt′
)

(3)

where guiding center velocity d~R/dt = ~vg = ~v||+~vd and ~R(t) is to be obtained by
solving for guiding center trajectories as an “initial value problem” in equilibrium
considered above. This is done by first assuming that the cross-field drift terms
[~vd] to be small and drop them at the zeroth order and to include them iteratively
at the next order.

• This procedure gives us P :

ιP =
∑
p,p′

Jp(xσtj)Jp′(x
σ
tj)

ω − σk||v|| − pωt exp(ι(p− p′)(θ − θ̄σ)) (4)
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Global linear gyrokinetic theory (11)

• Here xσtj = k⊥ξσ, ξσ = vd/ωt, vd =
(
v2
⊥/2 + v2

||
)
/(ωcR), ωt = σv||/(q(s)R), σ =

±1 (sign of ~v||), k⊥ =
√
κ2 + k2

θ, k|| = [nq(s)−m] /(q(s)R) and θ̄σ is defined
as tan θ̄σ = −κ/kθ and s = ρ/a, a−is the minor radius.

• A few points to be noted here: (1) Note that the grad-B and curvature drift
effects appear through the argument of Bessel functions (xσtj = k⊥vd/ωt) of the
Propagator. Thus for example, “radial and poloidal coupling” vanishes if xσtj = 0
in for Propagator and one would arrive at “cylindrical” results. Hence in our
model, Bessel functions in propagator bring about coupling between neighbouring
flux surfaces and also couple neighbouring poloidal harmonics. (2) Argument of
Bessel functions Jp’s in Propagator solution is i.e., xσtj = k⊥ξσ also depends on
transit frequency ωt, x

σ
tj can become xtj ' O(1). Hence transit harmonic orders

are to be chosen accordingly.

• In this form P contains effects such as transit harmonic and its coupling, parallel
velocity resonances (Landau), poloidal mode coupling.

• Similar propagators can be constructed for trapped particles as well.
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Global linear gyrokinetic theory (12)

• Quasineutrality condition yields the “closure”.∑
j

ñj(r;ω) ' 0; (5)

• Now, putting back the density fluctuations in the quasineutrality condition and
fourier transforming yields a Convolution Matrix due to equilibrium inhomogeneity.

• ∑
~k′

∑
j=i,e,f

∧Mj
~k,~k′ ϕ̃~k′ = 0

where ~k = (κ,m) and ~k′ = (κ′,m′). Note that we could have 3 species: passing
ions (i), passing electrons (e) and fast ions (f) or more. In the following we
discuss in detail the formulation for passing species.

• Also, ~k = (κ,m) and ~k′ = (κ′,m′). With the following definitions, ∆ρ = ρu − ρl
(upper and lower radial limits), ∆κ = κ− κ′ and ∆m = m−m′ matrix elements
are :
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Global linear gyrokinetic theory (13)

• Matrix elements are :

∧Mi
~k,~k′ =

1
∆ρ

∫ ρu

ρl

dρ exp(−ι∆κρ)×
[
αpδmm′ + exp(ι∆mθ̄)

∑
p

Î0
p,i

]
∧Me
~k,~k′ =

1
∆ρ

∫ ρu

ρl

dρ exp(−ι∆κρ)×
[
αp
τ(ρ)

δmm′ +
exp(ι∆mθ̄)

τ(ρ)

∑
p

Î0
p,e

]
(6)

Î lp,j =
1√

2πv3
th,j(ρ)

∫ vmaxj(ρ)

−vmaxj(ρ)
vl||dv|| exp

(
−

v2
||

v2
th,j(ρ)

){
N j

1I
σ
0,j −N j

2I
σ
1,j

Dσ,j
1

}
p′=p−(m−m′)

• Velocity Space Integrals are:

Iσn,j =
∫ v⊥max,j(ρ)

0

v2n+1
⊥ dv⊥ exp

(
− v2

⊥
2v2
th,j(ρ)

)
J2

0 (xLj)Jp(x
′σ
tj)Jp′(x

′σ
tj)
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Global linear gyrokinetic theory (14)

• The definitions for Vel. Integrals: v⊥max,j(ρ) = min(v||/
√
ε, vmax,j) which is

“trapped particle exclusion” from ω independent perpendicular velocity integral
Iσn,j; αp = 1−√ε/(1 + ε) is the fraction of passing particles; Î lp,j, is ω−dependent
parallel integrals; xσtj = k⊥ξσ, N j

1 = ω −wn,j
[
1 + (ηj/2)(v2

||/v
2
th,j)− 3)

]
; N j

2 =

wn,jηj/(2v2
th,j) and Dσ,j

1 =< wt,j(ρ) > (nqs −m′(1 − p)(σv||/vth,j) − ω where
< wt,j(ρ) >= vth,j(ρ)/(rqs) is the average transit frequency of the species j.

• As integrals Iσn,j are independent of ω and dependent only on v⊥, σ and other
equilibrium quantities, one may choose to calculate and store them as interpolation
tables (memory intensive) or alternatively, one may choose to calculate them when
needed (CPU-time intensive).

• Various numerical convergence tests should be performed with number of radial
and poloidal Fourier modes, equilibrium profile discretization and velocity integrals.
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Global linear gyrokinetic theory (15)

• Linear gyrokinetic eqns is formally solved using the equilibrium trajectories of
particles.

• As the drift excursions are of O(ρL,j/R0), a perturbative solution for guiding
centre drift yields analytical solution for the Propagators (unit source solution)
for both passing and trapped particles (not shown, but the method is the same!)

• This solution depends only on equilibrium quantities!

• Spatial inhomogeneity introduces coupling in spectral space [~k].

• Model includes fully nonadiabatic ions, electrons and fast particles - all at the same
physics footing!. This becomes possible because its a linear, spectral approach in
space and time. Electrons and ions are not “pushed” in time.

• Particles which are deeply trapped or deeply passing are treated correctly. Model
doesn’t account for particles near the passing-trapping border in vel-space, as it
is hard to obtain analytical equilibrium trajectories.
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Global linear gyrokinetic theory (16)

• FLR effects to all orders in k⊥ρL,j are retained for all species!

• Shafranov shift and finite β effects are included, i.e. (ϕ,A||, A⊥) fluctuations.
Only electrostatic case without Shafranov shift was shown here.

• The model in its final form is solved numerically in the code EM-GLOGYSTO.

• Code is MPI based and runs on 15-20 nodes. Recently a portable version based
on FFTW has been developed.

• Code was developed at Lausanne and later in India.
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• Equilibrium profiles for ITG modes with nonadiabatic thermal ions/electrons (top row)

+ Fast particles (bottom row)

  

linear theory - results (1)
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• The wavenumber scan for the mode frequency ωr (left panel) and growth rate γ (right

panel) of the ITG mode is presented for the cases, viz., 1. without energetic ions

(magenta line), 2. with singly charged energetic ions with flat η profile (green line),

3. peaked η profile (red line), 4. same η profile (blue line) as the thermal ions and 5.

with energetic He ions (brown line).

• For single charged ion
mf
mi

=1.0, zf =1.0,
Tf
Ti

=20,
nf
ne

=0.1

• For He ion
mf
mi

=2.0, zf =2.0,
Tf
Ti

=2 0,
nf
ne

=0.06.

  

linear theory - results (2)
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• Eigenmode for global ITG with nonadiabatic electrons and fast ions for n = 8 and

kθρLi = 0.4 for fast ion profiles same as the thermals.

  

linear theory - results (3)
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• The mode frequency ωr and the growth rate γ as a function of density fraction of

the energetic ions compared to background density of electron for the mode with n=8,

kθρLi = 0.4 for the cases, viz., 1. with singly charged energetic ions with flat η profile

(green line), 2. peaked η profile (red line), 3. same η profile (blue line) as the thermal

ions and 4. with energetic He ions (brown line).

  

linear theory - results (4)
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• The mode frequency ωr and the growth rate γ are plotted as a function of density

fraction of the energetic ions compared to background density of electron for the mode

with n=8, kθρLi = 0.4 for the cases, viz., 1. with singly charged energetic ions with

flat η profile (green line), 2. peaked η profile (red line), 3. same η profile (blue line)

as the thermal ions and 4. with energetic He ions (brown line).

  

linear theory - results (5)
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• A mixing length based estimation of transport in gyroBohm units is presented for the

cases, viz., 1. without energetic ions (magenta line), 2. with singly charged energetic

ions with flat η profile (green line), 3. peaked η profile (red line), 4. same η profile

(blue line) as the thermal ions and 5. with energetic He ions (brown line)

  

linear theory - results (6)
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linear theory - some comments(1)

• Global, fully gyrokinetic, linear stability formulation including nonadiabatic elec-
trons and nonperturbative fast particle component was shown.

• In general, ITGs appear to be stabilized by energetic components. Electromagnetic
effects are expected to further stabilize ITGs (not shown here).

• Spatial profile of fast particle drive seems unimportant.

• It appears that in an MHD stable equilibrium with fast particle population, ITGs
would be completely benign! Then why study nonlinear ITGs? - Answer is :
Don’t know!
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Nonlinear theory - issues for fast particles

• Using fast particles as “passive particles” i.e, their electromagnetic fields do not
alter the background dynamics, is it possible to answer the following questions:

. How does the fast particle transport get a�ected by global gyroki-

netic turbulence (ITG/TEM) ?

. Is the di�usion of fast particles dependent on its own energy ( or

temperature)?

. Is the di�usion normal for all energies and system sizes?

. As the turbulent drive increases (say larger and larger η), does
this a�ect energetic particle transport?

• Can these fast particles be treated as “active particles” so that the dynamics
becomes self-consistent?

. At least the linear nonpertubative global calculations imply that
ITGs can be made benign.
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Nonlinear theory : Governing Equations
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vE×B = −∇φ̄× b̂0b∗ ≡ b̂0 + v‖b̂0 × (b̂0 · ∇)b̂0

u = v‖b̂0
dR
dt

= u + vd + vE×B

du

dt
= −b∗ ·

(
v2
⊥
2
∇lnB0 +∇φ̄

)
µB =

v2
⊥

2B0
≈ const.

dw

dt
= −(1− w)

[
(vE×B + vd) · κr̂ +

Te

Ti
(u + vd) · ∇φ̄

]

F = F0 + δf w ≡ δf

F

δf =
N∑

j=1

wjδ(R−Rj)δ(µ− µj)δ(v‖ − v‖j) µ =
v2
⊥
2

Perturbative Simulation of ITG modes with Adiabatic Electrons

Turbulent     Neoclassical
    Drive              Drive

∇2
⊥φ− φ = −4πeδni

∇2
⊥φ = −4πeδni δni =

∫
δfidudµ

k‖ = 0

k‖ �= 0

vd ≡ v2
‖b̂0 × (b̂0 · ∇)b̂0 +

v2
⊥
2

b̂0 ×∇lnB0

�Parker and Lee, 1993; 
Lin, Tang, Lee, 1995�

  

Nonlineary theory : Standard Delta-f scheme
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• For simulations presented here thermal species are represented by 0.12 Billion particles.

Energetic particle are represented by 6.7 Million particles per energy value. 1024

compute nodes were used in parallel using GTS code.

• Figure shown depicts the time history of the thermal ion heat flux arising from the ITG

turbulence with system size a/ρi = 315. The heat flux is calculated using the relation

Qi =
R
d3v1

2v
2vEδf , where v is particle velocity, vE is the radial component of

gyro-averaged E×B drift and δf is the perturbed distribution function, and recorded

at r = 0.5a at every time step.

  

Nonlinear gyrokinetics- results (1)
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• 2D potential structures due to ITG in at t=200, linear regime (left) and t=1100,

nonlinear regime (right) of the turbulence for a/ρi = 315.

• The linear structure gets broken due to generation of self-consistent shear flow called

Zonal flows in the poloidal direction.

  

Nonlinear gyrokinetics- results (2)
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• Comparision of 2D potential structures due to ITG t=1100 in its nonlinear regime for

a/ρi = 157 (left), a/ρi = 315 (middle),a/ρi = 500 (right)

• 2D structures or Eddie size appears to decrease from left to right. Actually the

turbulence decorrelation length or Eddy size is INDEPENDENT of the system size!

There are simply more eddies in the larger system than in the smaller one.

  

Nonlinear gyrokinetics- results (3)
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(c)(b)(a)

• Passive fast particles or test particles of various energy values ε with uniform pitch

angle is introduced at r = 0.5 a for each system size: a/ρ = 157 (left), a/ρ = 315

(middle), a/ρ = 500 (right)

• Mean square displacement (MSD) of the hot ions defined as < σ2(ε, t) >=
1
N

Pi=N
i=1 (ri(ε, t) − ri(ε, 0))2 where, N is the total number of particles of hot

ions with energy ε, ri(ε, t) and ri(ε, 0) are, respectively, the radial positions of the

ith hot ion with energy ε at time t and t = 0. Th = Ti (red), Th = 2Ti (blue),

Th = 4Ti (green), Th = 8Ti (cyan), Th = 16Ti (magenta).

  

Nonlinear gyrokinetics- results (4)
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• Diffusion is properly defined only at late times. One could define Dh = δ < σ2 >

/δt = (< σ2(t2) > − < σ2(t1) >)/(t2 − t1) between two late times t1 and t2.

• Dh for 3 system size and different energies shows that diffusion increases with system

size for thermals whereas it does not increase so much with system size for hot particles

and nearly independent of the system size at high energies.

  

Nonlinear gyrokinetics- results (5)
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• MSD < σ2 >= Atp where p is the exponent. p = 1 for normal diffusion, p < 1 for

subdiffusion p > 1 for superdiffusion and p = 2 motion is ballistic.

• The value of p, calculated from the slope of log < σ2 > versus log t between time

t = 900LT/vthi to t = 1200LT/vthi

• Except for large system sizes, diffusion is mostly subdiffusive !
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• A Probabality density function (a PDF) was constructed with 200 bins and more than

1000 particles per bin.

• Probability density function (PDF) of particles at t = 1200.

• Standard deviation σ, skewness s and kurtosis k, defined respectively, as

σ
2

=
1

N

NX
i=1

(xi − x̄)
2

,

s =
√
N

PN
i=1(xi − x̄)3nPN

i=1(xi − x̄)2
o3/2

and

k = N

PN
i=1(xi − x̄)4nPN
i=1(xi − x̄)2

o2
− 3

• Kurtosis (relative peakedness), Skewness (measure of symmetry about the Mean). For

Gaussian, both should be zero as defined above.

• Deviations of these quantities from zero implies non-Gaussianity and non-normal

diffusion.
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• PDF at late times, indicates non-Gaussianity for small system size for low energies.
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• PDF at late times, indicates non-Gaussianity for intermediate system size (315) for low

energies.
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• PDF at late times, indicates Gaussianity for large system size (315) for all energies.
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• Nonlinear quasi-2D structures or turbulent eddies result from nonlinear ITG turbulence.

• These electrostatic structures tend to “rotate” or “trap” particles in their ExB motion

• Eddy-eddy interaction “detraps” the particle which then scatter away into regions

between eddies.

• Typical eddy sizes or turbulent decorrelation length scale is between 7− 20 ρLi (This

is a numerical estimate from two different studies]

• For particles considered here Larmor radii is about 1− 6ρLi, hence both thermals and

energetic particle can interact with the eddies.

• Eddy sizes are independent of system size and hence there would be relatively more

such structures in large system size than a smaller one.

• In small systems, particles tend to spend, on an average more time in “trapped”

regions (or ellipic regions) then in regions inbetween (or hyperboloic regions) and hence

sub-diffuse.

• In large systems, particles tend to spend, on an average more time in “detrapped”

regions (or hyperbolic regions) then in regions in the ellipic regions because of larger

eddy-eddy interactions

• High energy particles possibly orbit average strongly than low energy particles.
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• 2D potential structures due to TEM turbulence at quasilinear regime (left) and nonlinear

regime (right) of the turbulence for a/ρi = 157.

• Structures grow and “inverse cascade” ensues.
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• Fourier analysis of the potential fluctuations in toroidal (n) and poloidal (m) direction

yield the 2D power spectrum.

• In the quasilinear regime (left), the power spectrum peaks at (m,n) ' (50, 50). At

the later stages the power spectrum peaks at (m,n) ' (4, 5) clearly showing energy

going to large scales leading to formation of large scale eddies.
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• Test particle transport in TEM turbulence for small system size also shows strong

subdiffusion.

• < σ2 > /tp as function of time clearly shows saturation only for values of p < 1
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• PDF shows nonGaussianity confirming the value of the exponent p ' 0.6 much less

than 1.

• PDF of passing particles show deviations from Gaussianity.
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• PDF of trapped particles also show deviations from Gaussianity.
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• Nonperturbative linear global gyrokinetic stability analysis for ITG and
fast particles show that the mode is rendered benign. For values of
nf/ne ' 0.1 or more it is stabilized. Stabilization is stronger for Helium
ions.

• Nonlinear global gyrokinetic simulations for ITG and passive fast particles
indicate a clear transition from Subdiffusive regime at low system size to
Diffusive regime at large system sizes for both the thermals as well as
fast particles.

• PDFs constructed also corroborate.

• A heuristic explanation in terms of eddy trapping and detrapping is
suggested.

• TEM turbulence for small system size also shows similar signature. (Large
system size - work is ongoing)

• In general, for quasi-2D systems, the nature of diffusion (sub, normal,
super) is probably determined by the ratio of effective “ellipic” area to
the “hyperbolic” area (> 1, 1, < 1)!
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